ADA PINPOINT TOPIC PACKS

- (1)Proof (13 Qns)
- (2) Algebraic Proofs (1 Qns)

30_to_100_Percent_Pinpoint_AI_Pack

Time Allocation = 45mins, Max = 40 Marks

Calculated Grade Boundaries:

Crada	Montra
Grade	Marks
3+	3
3+ 4-	3 5 7
4	
4+	9
4 4+ 5- 5 5 5+ 6-	11
5	13
5+	15
6-	17
6	19
6+	22
6+ 7- 7	24
7	26
7+	28
8-	30
8	32 34
8 8+ 9- 9	34
9-	36
9	38
9+	40

Question 1 (AO2): 41% of students got this right (3 marks)

18. Prove that

$$(2n+3)^2 - (2n-3)^2$$
 is a multiple of 8

for all positive integer values of n.

(Total 3 marks)

Question 2 (AO2): (No Calc) 29% of students got this right (3 marks)

19.	Prove algebraically that the sum of the squares of two consecutive integers is always an odenumber.	d
	(Total 3 mar	ks)

Question 3 (AO2): (No Calc) 28% of students got this right (4 marks)

_	_							-
1	5.	n	10	วท	integer	greater	than	1
1	J.	$I\iota$	19	an	IIIICECI	greater	unan	1.

Use algebra to show that $(n^2 - 1) + (n - 1)^2$ is always equal to an even number.

(Total 4 marks)

Question 4 (AO2): (No Calc) 27% of students got this right (4 marks)

20.	Prove algebraically that the difference between the squares of any two consequal to the sum of these two integers.	ecutive integers is
		(Total 4 marks)

Question 5 (AO2): 24% of students got this right (3 marks)

13 For any three consecutive whole numbers, prove algebraically that the largest number and the smallest number are factors of the number that is one less than the square of the middle number.

Question 6 (AO2): 21% of students got this right (3 marks)

16. Prove algebraically that the product of two odd numbers is **always** an odd number.

Question 7 (AO2): 15% of students got this right (3 marks)

20. Proof that $(n + 5)^2 - (n - 5)^2$ is even if *n* is a positive integer.

(Total 3 marks)

Question 8 (AO2): 15% of students got this right (3 marks)

17 The product of two consecutive positive integers is added to the larger of the two integers.

Prove that the result is always a square number.

Question 9 (AO1): (No Calc) 14% of students got this right (4 marks)

n is an integer greater than 1

Prove algebraically that $n^2 - 2 - (n-2)^2$ is always an even number.

(Total for Question 16 is 4 marks)

Question 10 (AO1): (No Calc) 13% of students got this right (3 marks)

19.	Prove that the sum of the squares of any three consecutive odd numbers is always 11 more
	than a multiple of 12.

(Total for Question 19 is 3 marks)

Question 11 (AO1): (No Calc) 11% of students got this right (3 marks)

13	Prove algebraically	that the sum	of any two	different odd	d numbers is	s an even	number.
----	---------------------	--------------	------------	---------------	--------------	-----------	---------

(Total for Question 13 is 3 marks)

Question 12 (AO2): 5% of students got this right (4 marks)

	(1)
	(1)
lifference between N and K still be a multiple of 9	99?
	(3)
te difference between iv and K is always a multiple	e or 99.
nber that has the digits a, b and c . The difference between N and K is always a multiple	a of 00
ber that has the digits a , b and c .	
that $a > b > c$.	

Answers to Qn 1 (AO2): 41% of students got this right

18.	$\begin{vmatrix} 4n^2 + 12n + 3^2 - (4n^2 - 12n + 3^2) \end{vmatrix}$	Proof	3	M1 for 3 out of 4 terms correct in expansion of either $(2n + 3)^2$ or $(2n - 3)^2$
	$\begin{vmatrix} =4n^2 + 12n + 9 - 4n^2 + \\ 12n - 9 \end{vmatrix}$			A1 for 24n from correct expansion of both brackets
	=24n			A1 (dep on A1) for 24n is a multiple of 8 or 24n = $8 \times 3n$ or $24n \div 8 = 3n$
	$= 8 \times 3n$			

Answers to Qn 2 (AO2): (No Calc) 29% of students got this right

Questio	n Working	Answer	Mark	Notes
19.	$\begin{vmatrix} x^2 + (x+1)^2 \\ = x^2 + x^2 + 2x + 1 \end{vmatrix}$	proof	3	M1 for $x^2 + (x+1)^2$ or $(x-1)^2 + x^2$ oe
	$= 2x^2 + 2x + 1$ $= even + even + odd$			M1 for correctly expanding $(x + 1)^2$ or $(x - 1)^2$
	= odd			C1 for simplifying correctly and for final explanation and states x is an integer, e.g. $2(x^2 + x)$ is even and 1 is odd and e ven + odd is odd

Answers to Qn 3 (AO2): (No Calc) 28% of students got this right

15.	Correct proof	4	M1 expands $(n-1)^2$ with at least three out of four terms correct or $n^2 - n - n + 1$ or $n^2 - 2n + 1$
			M1 $n^2 - 1 + n^2 - n - n + 1$ or $2n^2 - 2n$
			A1 2 $(n^2 - n)$ or $2n (n - 1)$
			C1 (dep on M1) for conclusion $2 \times (n^2 - n)$ or $2 \times n \times (n - 1)$ is always even
			OR
			M1 factorises $n^2 - 1$ correctly $(n-1)(n+1)$
			M1 $(n-1)(n+1+n-1)$
			A1 $2n(n-1)$
			C1 (dep on M1) for conclusion $2 \times (n^2 - n)$ or $2 \times n \times (n - 1)$ is always even

Answers to Qn 4 (AO2): (No Calc) 27% of students got this right

20.	$(n+1)^2 - n^2$ = $n^2 + 2n + 1 - n^2$	proof	4	M1 for any two consecutive integers expressed algebraically
				e.g. n and $n+1$
	= 2n + 1			M1 (dep on M1) for the difference between the squares of 'two
	(n+1) + n = 2n + 1			consecutive integers' expressed algebraically e.g. $(n + 1)^2 - n^2$
	OR			A1 for correct expansion and simplification of difference of
	$(n+1)^2 - n^2$			squares, e.g. $2n + 1$
	=(n+1+n)(n+1-n)			C1 (dep on M2A1) for showing statement is correct,
	=(2n+1)(1) = 2n+1			e.g. $n + n + 1 = 2n + 1$ and $(n + 1)^2 - n^2 = 2n + 1$ from correct
	(n+1) + n = 2n + 1			supporting algebra
	OR			
	$n^2 - (n+1)^2 =$			
	$n^2 - (n^2 + 2n + 1) =$			
	-2n-1 = -(2n+1)			
	Difference is $2n + 1$			
	(n+1) + n = 2n + 1			

Answers to Qn 5 (AO2): 24% of students got this right

Question	Working	Answer	Mark	Notes
13		Proof	M1	for 3 consecutive integers written algebraically,
				e.g. $n, n + 1, n + 2$ or $n - 1, n, n + 1$
			M1	for multiplying the smallest and largest, e.g. $n(n + 2) = n^2 + 2n$ or $(n - 1)(n + 1) = n^2 - 1$ or for squaring the middle number
			C1	for a correct conclusion from correct expressions

Question Order Created by Pinpoint Learnings Automatic Differentiation Algorithmn

Answers to Qn 6 (AO2): 21% of students got this right

Question		Working	Answer	Mark	Notes	
*16		(2n+1)(2m+1) = 4nm + 2n + 2m + 1	Proof	3	M1 for $2n + 1$ oe used to describe an odd number	
		=2(2nm+n+m)+1			A1 for product = $4nm + 2n + 2m + 1$ where <i>n</i> is not the same as <i>m</i>	
					C1 (dep on M1) for stating that $2 \times (2nm + n + m)$ ' is even	
					since it is a multiple of 2 so adding 1 gives an odd number	

Answers to Qn 7 (AO2): 15% of students got this right

20 Show that $(n+3)^2 - (n-3)^2$ is an even number for all positive integer values of n.

$$(n^2+6n+9)-(n^2-6n+9)$$

$$=12n$$

$$=6\times2n$$

i even for all n.

Answers to Qn 8 (AO2): 15% of students got this right

Paper 1MA1: 3H			
Question	Working	Answer	Notes
17		proof	C1 starts proof eg $n(n+1)$ or $(n-1)\times n$
			C1 $n(n+1) + n+1$ or $(n-1) \times n + n$
			C1 for convincing proof including $(n+1)^2$ or
			n^2

Answers to Qn 9 (AO1): (No Calc) 14% of students got this right

Question 16 (Total 2 marks)

Part	Working or answer an examiner might expect to see	Mark	Notes
	$(n-2)^2 = n^2 - 4n + 4$	C1	This mark is given for a correct expansion of $(n-2)^2$
	$n^2 - 2 - n^2 + 4n - 4$	C1	This mark is given for a correct expansion of $n-2-(n-2)^2$
	2(2n-3)	C1	This mark is given for reducing the expression to $(2n-3)$
	2(2n-3) always even since it has a factor of 2 for all values of n	C1	This mark is given for a correct conclusion supported by working shown

Answers to Qn 10 (AO1): (No Calc) 13% of students got this right

19	shows result	C1	shows expansion of the squares of any three consecutive numbers shown algebraically, e.g. $(4n^2 + 4n + 1)$ or $(4n^2 + 12n + 9)$ or $(4n^2 + 20n + 25)$
		C1 C1	simplifies, e.g. $12n^2 + 36n + 35$ arrives at $12(n^2 + 3n + 2) + 11$ (oe) and concludes result

Answers to Qn 11 (AO1): (No Calc) 11% of students got this right

13 Prove algebraically that the sum of any two different odd numbers is an even number.

$$(2n + 1) + (2m + 1)$$

= $2n + 2m + 2$
= $2(n + m + 1)$
So sum is even number

(Total for Question 13 is 3 marks)

Answers to Qn 12 (AO2): 5% of students got this right

17	(a)	99(a - c)	M1	for forming $100a + 10b + c$ or $100c + 10b + a$
		with	M1	for finding the difference for their expressions
		conclusion	C1	for a concluding statement with $99(a-c)$
	(b)	statement	C1	e.g. has no effect, b's cancel